Quantum algorithms based on the block-encoding framework for matrix functions by contour integrals
نویسندگان
چکیده
he matrix functions can be defined by Cauchy's integral formula and approximated the linear combination of inverses shifted matrices using a quadrature formula. In this paper, we propose quantum algorithm for based on procedure to implement computers. Compared with previous study [S. Takahira, A. Ohashi, T. Sogabe, T.S. Usuda, Quant. Inf. Comput., \textbf{20}, 1\&2, 14--36, (Feb. 2020)] that proposed compute state function circular contour centered at origin, in present paper applied more general contour. Moreover, is described block-encoding framework. Similarly study, even if input not Hermitian or normal matrix. This an advantage compared singular value transformation.
منابع مشابه
developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولSeries expansion of Wiener integrals via block pulse functions
In this paper, a suitable numerical method based on block pulse functions is introduced to approximate the Wiener integrals which the exact solution of them is not exist or it may be so hard to find their exact solutions. Furthermore, the error analysis of this method is given. Some numerical examples are provided which show that the approximation method has a good degree of accuracy. The main ...
متن کاملComputing AAlpha, log(A), and Related Matrix Functions by Contour Integrals
New methods are proposed for the numerical evaluation of f (A) or f (A)b, where f (A) is a function such as A 1/2 or log(A) with singularities in (−∞, 0] and A is a matrix with eigenvalues on or near (0, ∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. The convergence is geometric, so that ...
متن کاملComputing Aα, log(A) and Related Matrix Functions by Contour Integrals
New methods are proposed for the numerical evaluation of f(A) or f(A)b, where f(A) is a function such as A1/2 or log(A) with singularities in (−∞, 0] and A is a matrix with eigenvalues on or near (0,∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. The convergence is geometric, so that the c...
متن کاملAlgorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework
We review algorithms developed for nonnegativematrix factorization (NMF) and 1 nonnegative tensor factorization (NTF) from a unified view based on the block coordinate 2 descent (BCD) framework. NMF and NTF are low-rank approximation methods for matri3 ces and tensors in which the low-rank factors are constrained to have only nonnegative 4 elements. The nonnegativity constraints have been shown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information & Computation
سال: 2022
ISSN: ['1533-7146']
DOI: https://doi.org/10.26421/qic22.11-12-4